CenCal Forum

Microgrids are for Everyone

November 7, 2019

Agenda

01	The History	of	Micro	grids
----	-------------	----	-------	-------

- 02 Microgrids 101
- 03 Real World Case Study
- 04 Microgrid Roadmap
- 05 Funding Sources
- 06 Conclusions

Historical Drivers for Microgrids

Microgrids 101 - Components

Microgrids 101: vs. Traditional Backup Generation

- Primary Motivators
 - Resilience, Reliability
- Secondary Motivators
 - Economics,Environmental goals
- Standard most "costeffective" solution would be diesel generators

Microgrids incorporate functionality of traditional backup generation and add additional benefits.

Microgrids 101 - Functionality

• Microgrids help balance customer priorities in the following areas:

Microgrids are for Everyone!

- Public Safety Power Shutoffs affect everyone!
 - Hours, days and potentially weeks without reliable grid access are the new reality
- Public Safety Benefits:
 - Keeps critical infrastructure up and running during an outage
 - Complements and integrates with existing backup now
- Bolsters Community Resiliency:
 - Powers emergency shelters / high density living areas
- Resiliency now has value.

Microgrids can provide solutions to urban and rural areas alike.

Microgrid Case Study: Culver City

■ *Sq ft:* 23,247

• *Usage:* 458,976 kWh, 53,424 Therms

Microgrid Case Study: Culver City

- Four separate facilities
 - Event spaces
 - Performance space
 - Municipal Pool
- Separated by main road
- Separate utility circuits
- Served by 4 different meters
- Collective usage:
 - 1.25M kWh/yr
 - 60k therms/yr

Microgrid Case Study: Culver City - Tools and Analysis

SCE Circuit Analysis using DERIM

 8760 Load, Solar+Storage, and Islanding for Resilience Analysis – DER-CAM

Optimal Dispatch for Electricity Technologies (July-emergency-week)

Option A - Economic Scenario

Provides enough Solar PV and storage capacity to maintain critical loads at Senior Center and Veterans Memorial Building during sustained outages

- Does not interconnect any meters
- Only offsets Municipal Plunge load (and Teen Center) via NEM-A
- Not a true microgrid

Senior Center

Veterans Memorial

Cost	\$2.6M		
Annual Savings	\$150k		
Simple Payback	17 years		
Standalone Resiliency	4 hours		

Option B - Resilient Scenario

Flexibility to share solar generation and storage at Veterans Memorial site

- Physically interconnection of three Veteran's meters into one meter
- Increased storage at Senior Center compared to Option A
- Allows for more solar and storage, adding resiliency to the site
- Not a true Microgrid for both sites

Senior Center

Veterans Memorial

Upfront Cost	\$4.2M			
Annual Savings	\$200k			
Simple Payback	21 years			
Standalone Resiliency	7 hours			

Option C - True Microgrid

Creates an actual microgrid between the two sites

- All four meters are combined into a microgrid
- Maximizes total solar and storage capacity
- Greatest resiliency option, and most aligned with City's goals and needs

Senior Center

Veterans Memorial

Upfront Cost	\$5.0M		
Annual Savings	\$214k		
Simple Payback	23 years		
Standalone Resiliency	10+ hours		

Microgrid Case Study: Culver City - Results

 Meter Consolidation and Islanding to create a microgrid behind a single meter – New Lines in Blue

 Optimal Technical and Financial Microgrid Solution

City Council Approval 3/18/19 to proceed and pursue funding with Willdan as Project Manager

Microgrid Roadmap

• High level overview of steps from beginning to end:

Step 1: Planning

- Activities include:
 - Feasibility Studies
 - Energy Audits
 - Strategic Plans
- Real-world example
 - Culver City Microgrid Feasibility
 - Worcester MA Community Microgrid

Funding Opportunities:

- State and Federal Grants –
 especially related to resiliency
- Utility Programs and Incentives
- Local Government Partnerships
- SoCal REN Pathway to ZNE

Pro Tip: The planning process allows you to engage and seek input from various stakeholders to make sure needs are understood and met!

Step 2: Energy Efficiency

- Activities include:
 - Energy Audits
 - Retrofits / RCx
- Real-world Examples
 - Culver City Microgrid began with EE:
 - 213,617 kWh, 120 kW, 3,100 therms
 - 17% upfront savings (17% less DERs)

Funding Opportunities:

- State and Federal Grants
- Utility Programs and Incentives
- Local Government Partnerships
- SoCal REN
- Turnkey Project Delivery Mechanisms

Step 2a - Electrification: If you're looking to go fully ZNE/zero carbon, replacing gas consuming equipment as it reaches EUL can set you up for future success

Step 3: Distributed Energy Resources

- Activities include:
 - Solar PV

Wind

Stationary Battery Storage

- Geothermal
- EVs

- Real-world Examples
 - Illinois Institute of Technology (IIT)

A) DCFC complex with 50-kW chargers and no ES and PV systems at initial installation

B) DCFC complex with 350-kW chargers and ES and PV systems

Funding Opportunities:

- State and Federal Grants
- Utility Programs and Incentives– SGIP
- System Lease Opportunities PPA, etc.

Step 3a - Zero Net Energy: If you're looking to go fully ZNE/ zero carbon, this will affect DER system sizing. Careful planning from step 1 will help inform choices of type and size of systems.

IIT DER Photos

IIT Pilot Projects

Campus Microgrid Smart Controller Smart Home

DC/AC Nanogrid at Cym

CSMART (Utility, City of Chicago, Industry Partnership)

Hybrid Charging Station

Step 4: Meter Consolidation

- Activities potentially include:
 - Behind-the-meter infrastructure upgrades
 - New Meter

- New Utility Service
- In-front-of-the-meter infrastructure upgrades

- Real-world Examples
 - Grid reconfiguration at IIT Loop based system

Funding Opportunities:

- State and Federal Grants
- Utility Programs and Incentives– EV programs
- System Lease Opportunities –
 PPA, etc.

Pro Tip:

With significant activity in the EV sector, utility programs which fund make-ready EV charger infrastructure installations can also potentially incorporate behind the meter DERs

Step 5: Microgrid Controller

Real-world Examples

Microgrid Controller Technology Stack (MCTS)

• Activities potentially include:

- Installation of physical hardware to strategically deploy DERs
- Setup and ranking of microgrid priorities
- Testing and Tuning

Funding Opportunities:

- State and Federal Grants
- FEMA / Emergency Planning Funding
- Utility Programs and Incentives – Microgrid Conversion Funding
- System Lease Opportunities– PPA, etc.

Big Picture Funding Opportunities/ Next steps

- Assess current progress towards microgrids / resilient operation
- Align Funding with needs

Source	Planning	EE	DERs	Microgrids	Resiliency / PSPS	EVs	ZNE
IOU Incentive		~				~	
SoCal REN	~	~	~				~
FEMA					~		
SGIP			~	*	*		
State / Federal Grants	~	~	~	~	~	~	~
Cap and Trade						~	
AQMD		~				~	
CARB		~				~	

Microgrid Ownership Structures / Funding Mechanisms

Free

Grants & Utility Incentives

- Grant (FEMA or CAL OES)
- Utility Rebates & Incentives
- Philanthropic Grants

Low Cost

Muni Debt & Subsidized Debt

- CEC Loans
- Muni Bonds & Leases (Tax-Exempt & Taxable)
- CA Infrastructure Bank

Moderate Cost

Private Debt or Equity

- Debt from energy/ infrastructure investors
- Third-party ownership of energy assets

Microgrid-as-a-Service: PPA style arrangement where assets and owned and operated by a 3rd party. Offtaker makes a per-kWh and capacity payment.

Conclusion

- Microgrids are for everyone!
- Deployment can be incremental and strategic based on priorities
 - Reliability

Environmental

Resiliency

- Economic
- Falling DER prices make more projects economical (alternative is diesel)
- Funding sources are catching up to technology and are expected to continue to increase
- A good plan / roadmap sets up successful project implementation with a vision for future growth and interoperability.
- Use the work of others who have gone before...

Where Are You On Your Journey? Assess and get started!

Presenters

Questions?

Thank you!

Michelle Villa
Account Manager

mvilla@willdan.com
714-287-4302

Patrick Burgess
Senior Energy Development Engineer
pburgess@willdan.com
847-334-2742

Steven Clarke
Senior Director
sclarke@willdan.com
415-699-9310